
 <lang/ar> català (ca) </lang/ca> česky (cs) </lang/cs> deutsch (de) </lang/de/> (ar) العربیة
english (en) </lang/en> español (es) </lang/es> فارسی (fa) </lang/fa> français (fr) </lang/fr> 
 <lang/he> hrvatski (hr) </lang/hr> indonesia (id) </lang/id> italiano (it) </lang/it/> (he) עברית
⽇本語 (ja) </lang/ja> ქართული (ka) </lang/ka> 한국어 (ko) </lang/ko> polski (pl) </lang/pl> 
português brasileiro (pt-BR) </lang/pt-BR> pyccкий (ru) </lang/ru> slovensky (sk) </lang/sk> 
slovenščina (sl) </lang/sl> svenska (sv) </lang/sv> Türkçe (tr) </lang/tr> 
简体中文 (zh-CN) </lang/zh-CN> 繁體中文 (zh-TW) </lang/zh-TW>

2.0.0 </spec/v2.0.0.html> 2.0.0-rc.2 </spec/v2.0.0-rc.2.html> 2.0.0-rc.1 </spec/v2.0.0-rc.1.html> 
1.0.0 </spec/v1.0.0.html> 1.0.0-beta </spec/v1.0.0-beta.html>

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards-compatible manner, and
3. PATCH version when you make backwards-compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH
format.

In the world of software management there exists a dread place called “dependency hell.” The bigger your
system grows and the more packages you integrate into your software, the more likely you are to find yourself,
one day, in this pit of despair.

In systems with many dependencies, releasing new package versions can quickly become a nightmare. If the
dependency specifications are too tight, you are in danger of version lock (the inability to upgrade a package
without having to release new versions of every dependent package). If dependencies are specified too loosely,
you will inevitably be bitten by version promiscuity (assuming compatibility with more future versions than is
reasonable). Dependency hell is where you are when version lock and/or version promiscuity prevent you from
easily and safely moving your project forward.

As a solution to this problem, I propose a simple set of rules and requirements that dictate how version
numbers are assigned and incremented. These rules are based on but not necessarily limited to pre-existing
widespread common practices in use in both closed and open-source software. For this system to work, you
first need to declare a public API. This may consist of documentation or be enforced by the code itself.
Regardless, it is important that this API be clear and precise. Once you identify your public API, you
communicate changes to it with specific increments to your version number. Consider a version format of X.Y.Z
(Major.Minor.Patch). Bug fixes not affecting the API increment the patch version, backwards compatible API
additions/changes increment the minor version, and backwards incompatible API changes increment the major
version.

I call this system “Semantic Versioning.” Under this scheme, version numbers and the way they change convey
meaning about the underlying code and what has been modified from one version to the next.

Semantic Versioning 2.0.0

Summary

Introduction

Semantic Versioning Specification (SemVer)

https://semver.org/lang/ar
https://semver.org/lang/ca
https://semver.org/lang/cs
https://semver.org/lang/de
https://semver.org/lang/en
https://semver.org/lang/es
https://semver.org/lang/fa
https://semver.org/lang/fr
https://semver.org/lang/he
https://semver.org/lang/hr
https://semver.org/lang/id
https://semver.org/lang/it
https://semver.org/lang/ja
https://semver.org/lang/ka
https://semver.org/lang/ko
https://semver.org/lang/pl
https://semver.org/lang/pt-BR
https://semver.org/lang/ru
https://semver.org/lang/sk
https://semver.org/lang/sl
https://semver.org/lang/sv
https://semver.org/lang/tr
https://semver.org/lang/zh-CN
https://semver.org/lang/zh-TW
https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0-rc.2.html
https://semver.org/spec/v2.0.0-rc.1.html
https://semver.org/spec/v1.0.0.html
https://semver.org/spec/v1.0.0-beta.html


The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119
<http://tools.ietf.org/html/rfc2119>.

1. Software using Semantic Versioning MUST declare a public API. This API could be declared in the code
itself or exist strictly in documentation. However it is done, it should be precise and comprehensive.

2. A normal version number MUST take the form X.Y.Z where X, Y, and Z are non-negative integers, and
MUST NOT contain leading zeroes. X is the major version, Y is the minor version, and Z is the patch
version. Each element MUST increase numerically. For instance: 1.9.0 -> 1.10.0 -> 1.11.0.

3. Once a versioned package has been released, the contents of that version MUST NOT be modified. Any
modifications MUST be released as a new version.

4. Major version zero (0.y.z) is for initial development. Anything may change at any time. The public API
should not be considered stable.

5. Version 1.0.0 defines the public API. The way in which the version number is incremented after this release
is dependent on this public API and how it changes.

6. Patch version Z (x.y.Z | x > 0) MUST be incremented if only backwards compatible bug fixes are introduced.
A bug fix is defined as an internal change that fixes incorrect behavior.

7. Minor version Y (x.Y.z | x > 0) MUST be incremented if new, backwards compatible functionality is
introduced to the public API. It MUST be incremented if any public API functionality is marked as
deprecated. It MAY be incremented if substantial new functionality or improvements are introduced within
the private code. It MAY include patch level changes. Patch version MUST be reset to 0 when minor version
is incremented.

8. Major version X (X.y.z | X > 0) MUST be incremented if any backwards incompatible changes are
introduced to the public API. It MAY include minor and patch level changes. Patch and minor version MUST
be reset to 0 when major version is incremented.

9. A pre-release version MAY be denoted by appending a hyphen and a series of dot separated identifiers
immediately following the patch version. Identifiers MUST comprise only ASCII alphanumerics and hyphen
[0-9A-Za-z-]. Identifiers MUST NOT be empty. Numeric identifiers MUST NOT include leading zeroes. Pre-
release versions have a lower precedence than the associated normal version. A pre-release version
indicates that the version is unstable and might not satisfy the intended compatibility requirements as
denoted by its associated normal version. Examples: 1.0.0-alpha, 1.0.0-alpha.1, 1.0.0-0.3.7, 1.0.0-x.7.z.92.

10. Build metadata MAY be denoted by appending a plus sign and a series of dot separated identifiers
immediately following the patch or pre-release version. Identifiers MUST comprise only ASCII
alphanumerics and hyphen [0-9A-Za-z-]. Identifiers MUST NOT be empty. Build metadata SHOULD be
ignored when determining version precedence. Thus two versions that differ only in the build metadata,
have the same precedence. Examples: 1.0.0-alpha+001, 1.0.0+20130313144700, 1.0.0-
beta+exp.sha.5114f85.

11. Precedence refers to how versions are compared to each other when ordered. Precedence MUST be
calculated by separating the version into major, minor, patch and pre-release identifiers in that order (Build
metadata does not figure into precedence). Precedence is determined by the first difference when
comparing each of these identifiers from left to right as follows: Major, minor, and patch versions are always
compared numerically. Example: 1.0.0 < 2.0.0 < 2.1.0 < 2.1.1. When major, minor, and patch are equal, a
pre-release version has lower precedence than a normal version. Example: 1.0.0-alpha < 1.0.0. Precedence
for two pre-release versions with the same major, minor, and patch version MUST be determined by
comparing each dot separated identifier from left to right until a difference is found as follows: identifiers
consisting of only digits are compared numerically and identifiers with letters or hyphens are compared
lexically in ASCII sort order. Numeric identifiers always have lower precedence than non-numeric identifiers.
A larger set of pre-release fields has a higher precedence than a smaller set, if all of the preceding
identifiers are equal. Example: 1.0.0-alpha < 1.0.0-alpha.1 < 1.0.0-alpha.beta < 1.0.0-beta < 1.0.0-beta.2 <
1.0.0-beta.11 < 1.0.0-rc.1 < 1.0.0.

http://tools.ietf.org/html/rfc2119


This is not a new or revolutionary idea. In fact, you probably do something close to this already. The problem is
that “close” isn’t good enough. Without compliance to some sort of formal specification, version numbers are
essentially useless for dependency management. By giving a name and clear definition to the above ideas, it
becomes easy to communicate your intentions to the users of your software. Once these intentions are clear,
flexible (but not too flexible) dependency specifications can finally be made.

A simple example will demonstrate how Semantic Versioning can make dependency hell a thing of the past.
Consider a library called “Firetruck.” It requires a Semantically Versioned package named “Ladder.” At the time
that Firetruck is created, Ladder is at version 3.1.0. Since Firetruck uses some functionality that was first
introduced in 3.1.0, you can safely specify the Ladder dependency as greater than or equal to 3.1.0 but less
than 4.0.0. Now, when Ladder version 3.1.1 and 3.2.0 become available, you can release them to your
package management system and know that they will be compatible with existing dependent software.

As a responsible developer you will, of course, want to verify that any package upgrades function as
advertised. The real world is a messy place; there’s nothing we can do about that but be vigilant. What you can
do is let Semantic Versioning provide you with a sane way to release and upgrade packages without having to
roll new versions of dependent packages, saving you time and hassle.

If all of this sounds desirable, all you need to do to start using Semantic Versioning is to declare that you are
doing so and then follow the rules. Link to this website from your README so others know the rules and can
benefit from them.

The simplest thing to do is start your initial development release at 0.1.0 and then increment the minor version
for each subsequent release.

If your software is being used in production, it should probably already be 1.0.0. If you have a stable API on
which users have come to depend, you should be 1.0.0. If you’re worrying a lot about backwards compatibility,
you should probably already be 1.0.0.

Major version zero is all about rapid development. If you’re changing the API every day you should either still
be in version 0.y.z or on a separate development branch working on the next major version.

This is a question of responsible development and foresight. Incompatible changes should not be introduced
lightly to software that has a lot of dependent code. The cost that must be incurred to upgrade can be
significant. Having to bump major versions to release incompatible changes means you’ll think through the
impact of your changes, and evaluate the cost/benefit ratio involved.

It is your responsibility as a professional developer to properly document software that is intended for use by
others. Managing software complexity is a hugely important part of keeping a project efficient, and that’s hard to
do if nobody knows how to use your software, or what methods are safe to call. In the long run, Semantic
Versioning, and the insistence on a well defined public API can keep everyone and everything running
smoothly.

Why Use Semantic Versioning?

FAQ

How should I deal with revisions in the 0.y.z initial development phase?

How do I know when to release 1.0.0?

Doesn’t this discourage rapid development and fast iteration?

If even the tiniest backwards incompatible changes to the public API require a major version
bump, won’t I end up at version 42.0.0 very rapidly?

Documenting the entire public API is too much work!

What do I do if I accidentally release a backwards incompatible change as a minor version?



As soon as you realize that you’ve broken the Semantic Versioning spec, fix the problem and release a new
minor version that corrects the problem and restores backwards compatibility. Even under this circumstance, it
is unacceptable to modify versioned releases. If it’s appropriate, document the offending version and inform
your users of the problem so that they are aware of the offending version.

That would be considered compatible since it does not affect the public API. Software that explicitly depends on
the same dependencies as your package should have their own dependency specifications and the author will
notice any conflicts. Determining whether the change is a patch level or minor level modification depends on
whether you updated your dependencies in order to fix a bug or introduce new functionality. I would usually
expect additional code for the latter instance, in which case it’s obviously a minor level increment.

Use your best judgment. If you have a huge audience that will be drastically impacted by changing the behavior
back to what the public API intended, then it may be best to perform a major version release, even though the
fix could strictly be considered a patch release. Remember, Semantic Versioning is all about conveying
meaning by how the version number changes. If these changes are important to your users, use the version
number to inform them.

Deprecating existing functionality is a normal part of software development and is often required to make
forward progress. When you deprecate part of your public API, you should do two things: (1) update your
documentation to let users know about the change, (2) issue a new minor release with the deprecation in place.
Before you completely remove the functionality in a new major release there should be at least one minor
release that contains the deprecation so that users can smoothly transition to the new API.

No, but use good judgment. A 255 character version string is probably overkill, for example. Also, specific
systems may impose their own limits on the size of the string.

The Semantic Versioning specification is authored by Tom Preston-Werner <http://tom.preston-werner.com>,
inventor of Gravatars and cofounder of GitHub.

If you’d like to leave feedback, please open an issue on GitHub <https://github.com/mojombo/semver/issues>.

Creative Commons - CC BY 3.0 <http://creativecommons.org/licenses/by/3.0/>

What should I do if I update my own dependencies without changing the public API?

What if I inadvertently alter the public API in a way that is not compliant with the version
number change (i.e. the code incorrectly introduces a major breaking change in a patch
release)

How should I handle deprecating functionality?

Does semver have a size limit on the version string?

About

License

http://tom.preston-werner.com/
https://github.com/mojombo/semver/issues
http://creativecommons.org/licenses/by/3.0/

